41 research outputs found

    Continuum limit of total variation on point clouds

    Full text link
    We consider point clouds obtained as random samples of a measure on a Euclidean domain. A graph representing the point cloud is obtained by assigning weights to edges based on the distance between the points they connect. Our goal is to develop mathematical tools needed to study the consistency, as the number of available data points increases, of graph-based machine learning algorithms for tasks such as clustering. In particular, we study when is the cut capacity, and more generally total variation, on these graphs a good approximation of the perimeter (total variation) in the continuum setting. We address this question in the setting of Γ\Gamma-convergence. We obtain almost optimal conditions on the scaling, as number of points increases, of the size of the neighborhood over which the points are connected by an edge for the Γ\Gamma-convergence to hold. Taking the limit is enabled by a transportation based metric which allows to suitably compare functionals defined on different point clouds

    Existence of Ground States of Nonlocal-Interaction Energies

    Full text link
    We investigate which nonlocal-interaction energies have a ground state (global minimizer). We consider this question over the space of probability measures and establish a sharp condition for the existence of ground states. We show that this condition is closely related to the notion of stability (i.e. HH-stability) of pairwise interaction potentials. Our approach uses the direct method of the calculus of variations.Comment: This version is to appear in the J Stat Phy

    Nonlocal Wasserstein Distance: Metric and Asymptotic Properties

    Full text link
    The seminal result of Benamou and Brenier provides a characterization of the Wasserstein distance as the path of the minimal action in the space of probability measures, where paths are solutions of the continuity equation and the action is the kinetic energy. Here we consider a fundamental modification of the framework where the paths are solutions of nonlocal (jump) continuity equations and the action is a nonlocal kinetic energy. The resulting nonlocal Wasserstein distances are relevant to fractional diffusions and Wasserstein distances on graphs. We characterize the basic properties of the distance and obtain sharp conditions on the (jump) kernel specifying the nonlocal transport that determine whether the topology metrized is the weak or the strong topology. A key result of the paper are the quantitative comparisons between the nonlocal and local Wasserstein distance

    Birth-death dynamics for sampling: Global convergence, approximations and their asymptotics

    Full text link
    Motivated by the challenge of sampling Gibbs measures with nonconvex potentials, we study a continuum birth-death dynamics. We improve results in previous works [51,57] and provide weaker hypotheses under which the probability density of the birth-death governed by Kullback-Leibler divergence or by χ2\chi^2 divergence converge exponentially fast to the Gibbs equilibrium measure, with a universal rate that is independent of the potential barrier. To build a practical numerical sampler based on the pure birth-death dynamics, we consider an interacting particle system, which is inspired by the gradient flow structure and the classical Fokker-Planck equation and relies on kernel-based approximations of the measure. Using the technique of Γ\Gamma-convergence of gradient flows, we show that on the torus, smooth and bounded positive solutions of the kernelized dynamics converge on finite time intervals, to the pure birth-death dynamics as the kernel bandwidth shrinks to zero. Moreover we provide quantitative estimates on the bias of minimizers of the energy corresponding to the kernelized dynamics. Finally we prove the long-time asymptotic results on the convergence of the asymptotic states of the kernelized dynamics towards the Gibbs measure.Comment: significant mathematical changes with more rigor on gradient flow
    corecore